Rutgers University: Algebra Written Qualifying Exam January 2015: Problem 3 Solution

Exercise. Prove that a finite group G is the internal direct product of its Sylow subgroups if and only if every Sylow subgroup is normal in G.

Solution.
Suppose $ G = \prod_{i=1}^{n} p_i^{\alpha_i}$.
(\Leftarrow) If every Sylow subgroup is normal in G , then for every p , the p -Sylow subgroup is unique (By the third Sylow theorem: $n_p = 1 \iff$ Sylow p - subgroup is a normal subgroup) \Rightarrow The Sylow subgroups are P_1, \ldots, P_n where $ P_i = p_i^{\alpha_i}$, each P_i has unique order, and
$P_i \cap P_i = \{e\}$ for all $i, j = 1, \ldots, n$ where $i \neq j$
$ P_1 \dots P_n = \frac{ P_1 \dots P_n }{1} = \prod_{i=1}^n p_i^{\alpha_i} = G $
Moreover, $P_1 \ldots P_n \subseteq G$ since $P_i \subseteq G$ and G is closed
$\implies P_1 \dots P_n = G$ Thus, G is the internal direct product of its Sylow groups.
(\Longrightarrow) Suppose G is the internal direct product of its Sylow subgroups, denoted H_i for $i = 1,, m$ Let $\phi: H_1 \times \cdots \times H_m \to G$ be defined by $\phi((h_1,, h_m)) = h_1 \dots h_m$
ϕ is an isomorphism, and
$\phi((e, \dots, e, h_{i1}, e, \dots, e, h_{j1}, e, \dots, e)(e, \dots, e, h_{i2}, e, \dots, e, h_{j2}, e, \dots, e))$
$= \phi((e, \dots, e, h_{i1}, e, \dots, e, h_{j1}, e, \dots, e))\phi((e, \dots, e, h_{i2}, e, \dots, e, h_{j2}, e, \dots, e))$
$\phi((e, \dots, e, h_{i1}h_{i2}, e, \dots, e, h_{j1}h_{j2}, e, \dots, e))$
$= e \dots e h_{i1} e \dots e h_{j1} e \dots e h_{i2} e \dots e h_{j2} e \dots e$
$n_{i1}n_{i2}n_{j1}n_{j2} = n_{i1}n_{j1}n_{i2}n_{j2}$ $h_{i2}h_{i1} = h_{i2}h_{i2}$
$n_{i2}n_{j1} - n_{j1}n_{i2}$
\implies The elements of H_i commute with the elements of H_j for $i \neq j$. Since ϕ is an isomorphism, it is surjective
So, $\forall a \in G, \exists h_i \in H_i \text{ for } i = 1, \dots, m \text{ s.t. } a = \prod_{i=1}^m h_i$
So for $h \in H_k$ where $1 \le k \le m$
$aha^{-1} = (h_1 \dots h_m)h(h_1 \dots h_m)^{-1}$
$=h_1\dots h_m h h_m^{-1}\dots h_1^{-1}$
$= h_k h h_k^{-1} h_1 h_1^{-1} \dots h_{k-1} h_{k-1}^{-1} h_{k+1} h_{k+1}^{-1} \dots h_m h_m^{-1}$ by comm. between H_i and $H_j i \neq j$
$=h_khh_k^{-1}\in H_k$
So $\forall a \in G \ aha^{-1} \in H_k$. Since h is arbitrary, $H_k \triangleleft G$
Since k was arbitrary, this holds for all k , In other words, every Sylow subgroup is normal in G
in other words, overy sylow subgroup is normal in a

L